THERMODYNAMIC FUNCTIONS FOR DISPERSE
TWO-PHASE FLUID SYSTEMS ¥
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Interface effects are investigated. Modified thermodynamic functions and equations are derived
for droplets and vapor bubbles of a two-phase system.

The description of thermodynamic processes in disperse liquid systems requires knowledge of the in-
stantaneous states of the phases. Thermodynamic functions can be used to describe not only the steady state
of equilibrium systems, but also the instantaneous states of nonequilibrium systems and the local states of
their separate homogeneous parts. We now propose to carry out a theoretical investigation of the state of
two-phase liquid systems in which surface tension affects the surface thermodynamic functions. -

Surface tension can be neglected only in the case of a simple horizontal phase interface, for which sur-
face tension does not elicit an excess pressure in either phase, or when the curvature of the interface is small
and the mass of the interfacial boundary layer is small in comparison with the total mass of the system.

In the study of two-phase systems it must be decided which phase is subjected to surface tension effects.
If one of the phases is disperse, then it is clearly the state of that phase which is principally affected by sur-
face tension. Consequently, the variations can be attributed mainly to the disperse phase, whereas the co-
herent phase experiences almost no variations [1]. The logical choice, then, is the disperse phase, which
is the option taken in the present study.

Our investigation is based on an analysis of the behavior of disperse particles in one-component two-
phase fluid systems and then of situations in which the disperse phase comprises two or more components.’

The fundamental thermodynamic equations relating the thermodynamic functions are as follows:

U=F+TS,
H=U-4pV,
G=F+pV.

For the case in which these thermodynamic functions refer to a single disperse particle surrounded by
a coherent phase (such as a droplet in a vapor atmosphere or a bubble in a liquid volume) we introduce the
nofation

U,=F, +TsSs, (1)
G, = Fy+pV. (3)

If F is the free energy of a definite fluid element of the same mass as a droplet or bubble without a phase
interface, then with the latter present and all other conditions being equal, the free energy of the given element
assumes the form

Fy = F + Ao, 4)
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where A is the area of the interface surrounding the disperse particle and o x is the surface tension [1-3].
The entropy is given by the expression [3,4]
oF

oT

which upon substitution into Eq. ) yields

da,,
aT

S,=S—A4 , )

where S+ is the entropy with the interface present [1,2, 5].

Substituting Eqs. @) and (5) into (1), we obtain the internal energy of a single disperse-phase particle
L,2,5]:

do,
U,=U+A |6, —T = 1.
,=U+4 o, i) (6)

It is well known that the pressure of particles surrounded by a liquid or vapor in a two-phase fluid sys-
tem is always greater than the pressure of the surrounding phase; we denote the excess by Ap. However,
the pressure in the surrounded particles, besides differing from the external pressure, also differs from

the saturation pressure corresponding to their intrinsic temperature, by an amount Apx to be determined
later.

Under the foregoing conditions the enthalpy expression (2) and the free~enthalpy expression (3) take the
respective forms

Oo,

H*=H—|—A(c*—— —ApV )

and
G, = G+ Ao, — Ap,V, (8)
as deduced earlier [6] in a determination of the quantity of work required to form the surface of a bubble [7, 8].

The surface tension is regarded in the majority of cases as a function of the temperature; this assump-
tion is precisely valid only in the case of a horizontal plane interfacial surface.

When droplets and bubbles of sufficiently small radius are investigated, they are assumed to be spheri~-
cal. Inthe present state of the theory the influence of particle size on surfr.ce tension is customarily taken
in the approximation

R
o
R4-26
where 6 is a quantity expressing intermolecular force effects and can be treated approximately as a constant

having a value between 10~1%and 10" m [5,9,10]. Inthe case of very small particle radii the approximate
expression (9) is not sufficiently accurate [9,11].

©)

Oy =

Thermodynamic analysis yields the equation

o, _ _ 28[1+ (8/R) + (8%3RY)]
IR R - 28[1 - (8/R) + (8% 3R?)]

10)

for the interdependent variables investigated, where 6 can no longer be regarded as a constant. Moreover, it
is important fo be aware of the probability that the given quantity can change sign and thus imply a minimum
surface tension as smaller and smaller radii are considered [12].

The indicated behavior of the surface tension is particularly important in connection with cavitation
effects, as will be discussed below.

Referring to the above-mentioned pressure differences, we know from the Laplace theorem that the
capillary excess pressure inside a spherical disperse-phase particle over the ambient pressure of the sur-
rounding medium is

20,

Ap = R 1)
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Also, the vapor pressure is frequently expressed on the basis of Kelvin's reasoning as

" 26 v

= py = — -

p p R v"_ vl

where the upper sign (+) refers to a droplet, and the lower sign (—) to a bubble [2,13-15]. This expression
is derived from the following relation due to Taylor:

: 12)

’ ’ Y

" 20, v
= €X —_— .
p' = p,exp ( ) (13)

In the latter equation the surface tension must be estimated as above, and the radius as in earlier works
[2,5,15,186].

This means that the pressure in a bubble can be obtained at once from Eq. (13), but to determine the
pressure in droplets the equation must be augmented with the pressure difference (11) between phases. There-
fore, the pressure in a single droplet or bubble can be determined from the relation

20, v . (Il Do, 14)
= Sex ' " ’ an ’
Psx = Ps €XP ( R v o ) R
and, introducing the notation N
20, v
Y = %, , 1
psR U” — Ul ( 5)
we obtain
1+ 1o,

Pr=p,expY +—————( _R)G" , (16)

where the upper sign (+) refers to a droplet, and the lower sign (—) to a bubble; thus, in the latter case the
last term on the right-hand side of the expression vanishes. The exponential can be either positive (for a
droplet) or negative (for a bubble) [15,16].

On the basis of Eq. (16) the difference between the saturation pressure and the pressure in a droplet or
bubble is given by the expression
(I£1)o,

Ap*=ps—p*=ps(1—exr>y)———R——, a7

in which the sign convention is the same as above.

It follows from Egs. (13)-(16) that when droplets disperse in a one-component system, the pressure in
both phases exceeds the saturation pressure, but when bubbles disperse in the same kind of system the pres-
sure in both phases becomes less than the saturation pressure. In other words, if a two-phase disperse sys-
tem is in thermal equilibrium, then in conventional terminology both phases are either supercooled droplets
ina vapor atmosphere) or superheated (bubbles in a liquid volume). Actually, Eqs. (13)-(16) more nearly
signify that not only the thermodynamic functions, but also the terms describing the saturation state itself,
vary under these conditions, because the usual definition of the saturation state whereby the pressure depends
exclusively on the temperature is valid not only in general, but also in the special case R = <, and if the latter
does not hold, the saturation state is determined not only by the temperature, but also by the surface tension
and particle size. The instantaneous saturation state of a droplet or vapor bubble can be identified with the
fact that negligibly small heat transfer is necessarily accompanied by phase changes.

The thermodynamic functions per unit mass of the disperse phase can be obtained in a special form as
follows.

Given the condition that the system is monodisperse, i.e., the temperature and size distribution in the
disperse phase is uniform, we use Eqs. ()-(8), substituting the spherical surface area and volume as well as
the pressure difference (17) therein, and then, referring everything to the mass of a single droplet or bubble,
obtain the corresponding functions

s*=s_3_vaqi/a_T_, (18)
R N
3 3
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U =ut 3v (0, —T00,/0T) _ 7o fg—o (p5 __3(0, —T00,/0T) ) , (20)
R R
b= h—o (p.0—epy)— LEILZIORT)
\ R
=Ts+g—v (ps(l—epr)—— (4 1) o, — 3790, /0T ’ (21)
R )
; 4+ 1
g*=g—v(ps(lfeerY)~(—=&), (22)
\ R
in which the upper sign (+) refers to a droplet, and the lower sign (—) to a bubble, while the sign of the expo-

nential is determined as in Egs. (15) and (16).
Having found the enthalpy, we can determine the latent heat with allowance for surface tension,

In the conventional latent-heat expression
’. p— kl/ — hl

the effects of surface tension and capillary excess pressure are disregarded. Taking those effects into
account, we need to examine two cases, depending on the nature of the two-phase system.,

1f droplets disperse with a uniform temperature and size distribution in a vapor atmosphere, then the
latent heat per unit mass of liquid phase can be written

’ ” ,
r*—h -—h*.

If a liquid volume contains bubbles with a uniform temperature and size distribution, then the latent heat
per unit mass of vapor phase is given by

PR
re=h,—h.

On the basis of the foregoing relations two kinds of capillary latent heat can be described by the expres-
sion )
(4 £ 1) o, — 3790, /0T \

r*:riv(pﬁu—exmf = ) 23)

in which the upper signs (+) refer to droplets in a vapor atmosphere, and the lower signs (—) to bubbles ina
liguid volume.

It is seen that these two kinds of capillary latent heat differ from the usual form and obey the double in-
equality
I <r<<ry

under the condition that the temperature and radii of the disperse~phase particles are identical, This means
that, contrasted with the usual latent heat, evaporation of the liquid requires less energy if droplets are
formed and, on the other hand, more energy is released in condensation of the vapor phase if it consists of
bubbles.

The foregoing considerations suggest apt definitions for the differentials of the thermodynamic functions
for disperse particles.

Thus, the differentials of the principal thermodynamic variables (1)-(3) are specified in the form
dU, = dF, + d(TS,),
dH* =dU,+ d (p*V),

dG, = dF, +d(p,V),
whereupon the Gibbs —Duhem relation

SdT —Vdp, + Mdg, =0 (24)
can be used to define the differentials of the potential functions as

dF, = — pdV — S, AT + g, dM, dU, — TdS, — p,dV - g, dM, (25), (26)
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df, = TdS, +Vdp, + g,dM, dG, = Vdp, — S,dT -+ g,dM, (27). (28)
and for the specific values, when the Gibbs —Duhem relation hés theriform
5, dT —uvdp,, 4 dg, = 0, 29

the differentials of the potential functions per unit mass of the disperse phase can be described by the rela-
tions
df, = —pudv—s5,dT, du, = Tds, — p,do, (30), (31)
dh, = Tds, — vdp,,, dg, = vdp, — 5,dT. (32), (33)

These equations are seen to differ from their conventional counterparts only insofar as they contain s,
ds %, p*, and dp* rather thans, ds, p, and dp. The entropy s« and pressure px for the disperse state have
already been found, so their differentials are readily determined. Differentiating expressions (16) and (18)
with respect to T and the radius R, we obtain

5 _ ds  3v (90, —dlny ;"20*) (34)
or dr R \ aT ar ' arz )’
05 _ (1_. do, _ %0 ) (35)
R R \R T ATOR
dp, | dp Y 1+1 do;
— S __|__ - Y+ - * .
ar —\ar TP )e}‘p R aT ©6)
ap oy 9
% e p expY 141 =« =
R =P Tap P +{1=+D R R 37

The double sign convention is as explained above.
For the given conditions the entropy differential is definéd as

. 0%, . 0%,

oT R ' orr ' OTAR

ds*zds———%}( 9% 4y 2 dr), 38)

whereas the pressure differential in disperse particles can be defined in the form
dp, = (dp, + pdY) expY + (1 = 1) d % : (39)
which may be regarded as an analog of the Clausius — Clapeyron equations
S!I — SI

dpS: ” ’ dr
v —0

for the disperse state, because the pressure p does not depend on the temperature alone.
Once the differentials have been defined, we can define the polytropy exponent nx for the disperse state.

The isentropy exponent actually denotes the ratio of the isobarie to the isochoric specific heat, but these
two types of specific heat represent the ratios of the enthalpy and internal energy to the temperature. Thus,
in the saturation state, for which the thermodynamic functions are functions of one variable, the total differen-
tials can be used in the expression

¢, _ dhdT  dn

% = =

¢,  dudl  du’

(40)

The variation of the radii of droplets and bubbles is always related to the entropy variation, which is neither
an isentropic 1ior a polytropic process. The expression (40) for the isoentropy exponent enables us to define
acharacteristic analog of the polytropy exponent for real processes. From Egs. (31), (32), and (40) we obtain
n — dh,  Tds,+vdp,
* du,  Tds,—pdv
Since the analog of the polytropy exponent is valid for disperse states, it may be determined with the
help of (16), (38), and (39).

(41)
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It should be recalled that the substitution dS « = 0 yields the analog of the isentropy exponent

x*:_ﬂp_* s (42)
Py

which has already been mentioned in the literature on two-phase systems [10].

In the case of a polydisperse system, where the temperature and size distribution in the disperse phase
is not uniform, averaging is necessary. Two averaging techniques are used, depending on the nature of the
distributions. The distribution functiong can be either discrete or continuous.

To generalize and abbreviate the subsequent calculations we introduce the notation
2y = Su [ar Usi B G Ty 43)
as generalized symbols for Egs. (18)-(23).

Given the condition that the disperse phase consists of discrete groups, in each of which the individual
spherical particles have temperature T and radius r+ and the mass M denotes the total mass of the groups,
the formula for averaging per unit mass of the disperse phase is

33T R My,
_ 22
22 My ’
kg

7y =
where one of the variables of Eq. (43) is inserted in place of zx.

(44)

For the case in which the disperse phase contains spherical particles with a continuous temperature and
size distribution, analogously, the formula

- S f 2, (T, R) MdTdR us)
| § mdrdr

gives the averages of the indicated functions per unit mass of the disperse phase.

So far we have discussed the thermodynamic functions and certain other relations for the disperse phase
in one-component systems irrespective of their aggregate state. Below we indicate the differences that can
be established between one- and two-component systems with respect to the disperse phase.

It is well known that the behavior of the interphase boundary layer is Jetermined by surface tension,
which depends significantly on the chemical composition and temperature of the liquid phase, to a lesser
degree on the particle size (apart from extremely small sizes), and almost not at all on the chemical com-
position of the contiguous uncondensed phase. .

Theg foregoing considerations imply that surface tension must be included in all equations for the medium
that refer to the contiguous vapor or gas, regardless of which liquid is in the disperse state.

This means that the equations derived for the disperse phase in one-component systems are also valid
in general for systems of two or more components, but the following must be borne in mind concerning their
form.

Given the assumption of equilibrium, phases having different chemical compositions interpenetrate, so
that the liquid phase becomes a solution and the vapor phase a mixture of vapors., Therefore, in determining
the surface tension it is essential to consider both the solubility of the uncondensed component inthe surround-
ing liquid as well ag evaporation of the liquid.

In the nonequilibrium case, where the dimensions of the droplets or bubbles vary, the decreasing-mass
phase does not undergo variations in chemical composition, whereas the concentration of the other phase varies
continuously, although this transition can be limited by the physical and chemical properties of the components.

Consequently, the equations derived for the disperse phase in one~component systems are also valid for
two-phase systems in the same form, subject to the condition that physical variables depending on the surface
tension are defined with sufficient accuracy, as discussed above.

In the case of multicomponent systems, i.e., when the digsperse phase consists of droplets or bubbles of
dissimilar chemical composition, the equations derived for one-component systems are valid only for the in-
dividual components of the disperse phase. :
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Under these conditions we use the symbols z(*i), '7:,(3), and Eg) in Eqs. (43)-(@45), the superscript (i) de-
noting that the given variable refers to the i-th component, and we denote the mass of the i-th component by
Mj. Inthis case the weighted averages of the above-mentioned variables per unit mass of the disperse phase
can be defined as .

z(,i)Mi
2D i
P = (46)
%
oM
for particles having discrete temperature and size distributions, or as
Z¥M,
1S @n)

M,

for continuous distributions. i
We complement the foregoing discussion with an analysis of a special case of theoretical and practical
significance,

The pressure in a vapor bubble necessarily exceeds the pressure of the surrounding liquid. It is also
known that the Clausius — Clapeyron equation relates the pressure difference to the temperature difference
[17,18], sothat Egs. (13)~(16) do not describe thermal equilibrium between vapor bubbles and the surrounding
liquid.

Experimental studies indicate that as bubbles grow evaporation takes place at the bubble boundary, the
temperature and pressure in the bubble interior decreasing. The temperature inside the bubble decreases
due to evaporation at the vapor — liquid interface with growth of the bubble [19].

These experimental results can be characterized by the relation

sgndT = sgndp, @38)
or equivalently, in accordance with the Clausius — Clapeyron equation, in the form
sgndp,, = —sgndR, 49)
or even in the alternative form
sgndp, = sgnd(Ap). (50)

In the nonequilibrium state the bubble boundary always moves radially due to the temperature difference
between phases [18, 20].

When bubbles implode, the temperature difference produces a heat sink accompanied by a reduction in
size. As a result of condensation at the phase interface, not only does not bubble radius diminish, but the
pressure difference between phases and the bubble pressure increase according to Eqs. (48)-(50), whereas the
wall temperature and surface tension remain virtually unchanged [18].

The increase in temperéture elicits a stronger heat sink, and the size reduction promotes an increase
in the temperature difference, causing the heat sink to be more active, so that, contrary to all expectations,
the temperature variation does not produce rapid temperature equalization between phases [21].

It must be realized, however, that the reduction in bubble size does not necessarily have a monotonic
behavior, rather it can exhibit a fluctuation character [22,23]. The possible size fluctuations can be regarded
as a secondary process superimposed on the primary effect induced by the temperature difference. Despite
this variation of size, both the temperature and pressure in the bubbles are always higher than in the liquid
phase. Consequently, the temperature difference between phases is preserved and gives rise to a gradual
reduction in size. )

It follows from the foregoing considerations that the implosion of bubbles is a positive feedback process.
On the other hand, this effect can be regarded as a realization of the reaction principle for the special case of
radially moving elements of a surface with diminishing mass. Here work is done in compression, accompanied
by heat release. It is logical to inquire, therefore, how much the bubble temperature can increase. Inasmuch
as this question cannot be answered precisely, we have no alternative but to assume that the temperature in-
creases until it is no longer subjected to the influence of the primary cause of the process.
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In the given situation, that cause is the growing temperature difference, for which the pressure differ-
ence and the pressure itself increase. This means that a vapor bubble would cease to exist if the surface
tension were to decrease with increasing bubble temperature [21]. Inasmuch as the wall temperature and
surface tension scarcely decrease at all [18], the increasing pressure and temperature of the vapor bubble
exceed the usual critical values. Under the conditions that we have stated above it would be more correct to
refer to this effect as a modification of the critical state, as is inferred from the fact that the saturation
state also depends on the particle size.

The latter hypothesis is in fact confirmed by the fundamental results of cavitation studies. It has been
found that cavitation is induced primarily by repeated short-term high pressures and temperatures accom-
panying the implosion of bubbles [24]. The high temperature of a bubble in the final state is postulated on the
basis of the fact that at cavitation-induced erosion pits a change in color of a metal surface can be observed.
The surface erosion and color change cannot be attributed solely to chemical dissociation of the liquid [24].

In looking for the causes of cavitation erosion we refer to the capillary excess pressure described by
expression (11),

We reiterate in this connection that the wall temperature and surface tension remain practically un-
changed [18], so that the variations in surface tension must be identified with size variation.

Opinions differ with regard to this problem. Using a quasithermodynamic approach, Tolman [9] pre~
dicts a reduction in surface tension for small bubble sizes, and this result is corroborated by the statistical
treatment of Kirkwood and Buff [25]. On the other hand, Martynov [26] assumes that the surface tension must
increase with the curvature.

A direct experimental method has not been devised to date for confirmation of these theoretical results,
but insight into the problem is afforded by a hypothesis of Thomson and Thomson [12]. The latter assume that
the curve of the surface tension o« as a function of the radius R passes through a minimum. Accordingly,
the above-indicated cases and partial theoretical results appear to complement one another.

We therefore arrive at the conclusion that in the initial period of bubble implosion the size variation
exerts a stronger influence than surface tension on the capillary excess pressure, i.e., the numerator in ex-
pression (11) decreases more slowly than the denominator. Inthe later period of bubble implogion the surface
tension (above the minimum) increases inversely as the size, whereupon the capillary excess pressure in-
creases so rapidly as to produce extremely high values of the final pressure and temperature in the bubbles.
This inference is completely consistent with the well-known experimental results that if the final pressure in
bubble implosion is very high, it can be several orders of magnitude (10%to 10%) greater than the normal crit-
ical pressure. This order of magnitude of the final pressure can occur only in the event of an ultimately rapid
and sizable increase in the surface tension in transition to very small bubble sizes.

Under the given circumstances temperature equalization of the phases takes place in such a way that a
bubble of small residual mass existing in the altered critical state is determined by the final radii, expands
instantaneously, thereby generating a strong shock wave, and then mixes with the liquid phase. It can be ob-
served that surface effects take on special importance when a bubble is close to complete implosion [18], i.e.,
when its radius is less than a few microns. '

It is important to mention, finally, that the usual two-dimensional thermodynamic diagrams (pressure
versus temperature, pressure versus specific volume, temperature versus specific entropy, specific enthalpy
versus specific entropy, etc.) are valid only for the liquid and vapor volumes. Diagrams representing drop-
lets and bubbles have been investigated in three-dimensional space and can be derived from the two~dimen-
sional diagrams by adding a third coordinate 1/R to them. In such coordinate systems the original diagrams
become the initial planes, in which 1/R = 0, and so remain valid for the volume phases; in other words, sur-
face terms referring to disperse particles of finite radius vanish in the modified equations.

Although the translational motion effects ignored here are of considerable importance, they do not alter
the nature of the investigated processes, but their time dependence does of course change accordingly.
NOTATION

A, area of phase interface; Cp, isobaric specific heat; cy, isochoric specific heat; F, free energy; f,
specific free energy; G, free enthalpy; g, specific free enthalpy; H, enthalpy; h, specific enthalpy; M, mass;
n, polytropy exponent; p, pressure; Ap, pressure difference; pg, saturation pressure; R, radius of disperse
particles; r, latent heat of vaporization; S, entropy; s, specific entropy; T, absolute temperature; U,
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internal energy; u, specific internal energy; V, volume; v, specific volume; Y, exponent of deviation from
saturation state; z, arbitrary function; 6, quantity characterizing intermolecular forces; %, isentropy ex-
ponent; o, surface tension; prime refers to the liquid phase of a vapor; double prime refers to the vapor
phase; asterisk refers to the disperse state.

N =
v .

-

12,

13.
14,
15,
18,

17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
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