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In te r face  effects a r e  inves t igated.  Modified the rmodynamic  functions and equations a r e  der ived 
for  drople ts  and vapor  bubbles of a two-phase  s y s t e m .  

The  desc r ip t ion  of t he rmodynamic  p r o c e s s e s  in d i s p e r s e  liquid s y s t e m s  r equ i re s  knowledge of the in-  
s tantaneous s ta tes  of the phases .  The rm odynamic  functions can be used to  de sc r i be  not only the s teady s t a t e  
of equi l ibr ium s y s t e m s ,  but a l so  the instantaneous s t a t e s  of nonequi l ibr ium s y s t e m s  and the local s ta tes  of 
t he i r  s e p a r a t e  homogeneous p a r t s .  We now propose  to c a r r y  out a t heo re t i ca l  invest igat ion of the s t a te  of 
two-phase  liquid s y s t e m s  in which su r f ace  tens ion affects  the su r f ace  t he rmodynamic  functions.  

Surface  tens ion  can be neglected only in the case  of a s imp le  hor izontal  phase  in ter face ,  for which s u r -  
face  tens ion does not elicit  an excess  p r e s s u r e  in e i ther  phase ,  or when the cu rva tu re  of the in te r face  is sma l l  
and the mass  of the in te r fac ia l  boundary layer  is sma l l  in compar i son  with the to ta l  mass  of the s y s t e m .  

In the study of two-phase  s y s t e m s  it must  be decided which phase  is subjected to su r f ace  tension effects .  
I f  one of the phases  is d i s p e r s e ,  then it is c l ea r ly  the s t a te  of that  phase  which is pr inc ipal ly  affected by s u r -  
face tens ion.  Consequently,  the var ia t ions  can be at t r ibuted mainly  to the d i s p e r s e  phase ,  whereas  the co-  
herent  phase  exper iences  a lmos t  no var ia t ions  [1]. The  logical choice,  then, is the  d i s p e r s e  phase,  which 
is the option taken  in the p resen t  s tudy.  

Our invest igat ion is based on an analys is  of the behavior  of d i s p e r s e  par t ic les  in one-component  two-  
phase  fluid s y s t e m s  and then of s i tuat ions in which the d i s p e r s e  phase  c o m p r i s e s  two or m o r e  c o m p o n e n t s .  

The  fundamental  t he rmodynamic  equations re la t ing  the t he rmodynamic  functions a r e  as follows : 

U = F-}-TS, 

H = U + p Y ,  

G = F + p V .  

For  the case  in which these  the rmodynamic  functions r e f e r  to a s ingle d i s p e r s e  par t ic le  sur rounded  by 
a coherent  phase  (such as a droplet  in a vapor  a t m o s p h e r e  or a bubble in a liquid volume) we introduce the 
notation 

U, --- F, § T,S , ,  (1) 

H. = U, -9 p.V, (2) 

G, = F, + p,V. (3) 

If F is the f r ee  energy of a definite fluid e lement  of the s a m e  mass  as a droplet  or  bubble without a phase 
in ter face ,  then with the la t ter  p resen t  and all  other conditions being equal, the f r ee  energy of the given e lement  
a s s u m e s  the f o r m  

F, = F + Ao',, (4) 
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where A is the a rea  of the interface surrounding the d isperse  part icle  and ~ ,  is the surface  tension [1-3]. 
The entropy is given by the expression [3,4] 

which upon substitution into Eq. (4) yields 

OF 
S - - ,  

OT 

S. = S --  A On, 
OT 

where S ,  is the entropy- with the interface present  [1,2, 5]. 

Substituting Eqs.  
[1,2, 5]: 

- -  , ( 5 )  

(4) and (5) into (1), we obtain the internal energy of a single d i sperse-phase  part icle 

U, = U +  A ( % - - T  Oa, ) 
OT " (6) 

It is well known that the p re s su re  of part icles  surrounded by a liquid or vapor in a two-phase fluid s y s -  
t em is always g rea te r  than the p ressu re  of the surrounding phase; we denote the excess by Ap. However, 
the p res su re  in the surrounded part icles ,  besides differing f rom the external p ressure ,  also differs f rom 
*he saturat ion p re s su re  corresponding to their  intrinsic t empera ture ,  by an amount Ap ,  to be determined 
later .  

Under the foregoing conditions the enthalpy expression (2) and the free-enthalpy express ion (3) take the 
respect ive  forms 

H, = H + A ( a , - -  T aa, ' )--Ap,V (7) 
OT 

and 

6, = 6 § A(~,-  hp,V, (8) 

as deduced ear l ier  [6] in a determinat ion of the quantity of work required to form the surface  of a bubble [7, 8]. 

The sur face  tension is regarded in the majori ty of cases as a function of the t empera ture ;  this a s sump-  
• is precise ly  valid only in the case of a horizontal plane interracial  sur face .  

When droplets and bubbles of sufficiently smal l  radius are  investigated, they a re  assumed to be spher i -  
cal.  In the present  state of the theory the influence of part icle s ize  on surf~.ee tension is cus tomari ly  taken 
in the approximation 

R 
a ,  - -  ~ ,  ( 9 )  

R-i- 26 

where 5 is a quantity expressing in termolecular  force effects and can be t reated approximately as a constant 
having a value between 10 -l~ and 10 -9 m [5, 9, 10]. In the case of very  smal l  part icle  radii  the approximate 
expression (9) is not sufficiently accura te  [9, 11]. 

Thermodynamic  analysis yields the equation 

Oa. 2~5 [ 1 + (6/R) + (6e/3R2)] 
OR R + 2611 + (6/R) + (62/3R2)] (10) 

for the interdependent variables  investigated, where 6 can no longer be regarded as a constant.  Moreover ,  it 
is important to be aware  of the probability that the given quantity can change sign and thus imply a minimum 
sur face  tension as smal le r  and smal le r  radii  a re  considered [12]. 

The indicated behavior of the surface  tension is par t icular ly  important in connection with cavitation 
effects, as will be discussed below. 

Referr ing to the above-mentioned p res su re  differences,  we know from the Laplace theorem that the 
capi l lary excess p res su re  inside a spher ical  d i spe r se -phase  part icle  over the ambient p re s su re  of the s u r -  
rounding medium is 

2(y, 
A p =  R (ii) 
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Also ,  the vapor p r e s su re  is frequently expressed on the basis of Kelvin's reasoning as 

2(1 ~" 
p" = p~-4- - -  �9 - -  , (12) 

R V"-- 9' 

where the upper sign (+) refers to a droplet, and the lower sign (--) to a bubble [2, 13-16]. This expression 
is derived f rom the ,following re la t ion due to Taylor  �9 

p,, = psexp ( 2~. v' ) psR v" - -  v' " (13) 

In the latter equation the sur face  tension must be estimated as above, and the radius as in ear l ie r  works 
[2, 5, 15,161. 

This means that the pressure in a bubble can be obtained at once from Eq. (13), but to determine the 
pressure in droplets the equation must be augmented with the pressure difference (11) between phases. There- 
fore, the pressure in a single droplet or bubble can be determined from the relation 

P ' = p ~ e x p (  2a*p~R v"--v'v') , (14-1) a , T  R (14) 

and, introducing the notation " 

y = 2,~, v' 
p~R v" - -v '  ' (15) 

we obtain 

P. = P8 exp Y + (l __+ 1) '~* , (16) 
R 

where the upper sign (+) r e fe r s  to a droplet ,  and the lower sign (--) to a bubble; thus,  in the latter case  the 
last t e r m  on the r ight-hand side of the express ion vanishes.  The exponential can be either positive (for a 
droplet) or negative (for a bubble) [15, 16]. 

On the basis of Eq. (16) the difference between the sa turat ion p re s su re  and the p r e s s u r e  in a droplet  or 
bubble is given by the express ion 

Ap. = p~ - -  p. = p~ (1 - -  exp Y) (1 ___ I ) ~* , (17) 
R 

in which the sign convention is the same  as above. 

It follows f rom Eqs. (13)-(16) that when droplets d i sperse  in a one-component sys tem,  the p res su re  in 
both phases exceeds the sa turat ion p res su re ,  but when bubbles d i sperse  in the same  kind of sys tem the p re s -  
su re  in both phases becomes less than the sa turat ion p r e s s u r e .  In other words,  if a two-phase d isperse  s y s -  
t e m  is in the rmal  equilibrium, then in conventional terminology both phases a re  either supercooled (droplets 
in a vapor a tmosphere)  or superheated (bubbles in a liquid volume). Actually, Eqs.  (13)-(16) more  nearly 
signify that not only the thermodynamic  functions, but a lso the t e rms  descr ibing the saturat ion state  itself, 
vary  under these conditions, because the usual definition of the sa turat ion state  whereby the p re s su re  depends 
exclusively on the t empera tu re  is valid not only in general ,  but a lso in the special  case R = 0% and if the latter 
does not hold, the sa turat ion state  is determined not only by the t empera tu re ,  but also by the sur face  tension 
and part icle  s ize .  The instantaneous sa turat ion state  of a droplet or vapor bubble can be identified with the 
fact that negligibly smal l  heat t r ans f e r  is necessar i ly  accompanied by phase changes.  

The thermodynamic  functions per unit mass  of the d i sperse  phase can be obtained in a specia l  form as 
follows. 

Given the condition that the sys tem is monodisperse ,  i . e . ,  the t empera tu re  and s ize  distr ibution in the 
d i sperse  phase is uniform, we use Eqs. (4)-(8), substituting the spher ica l  sur face  a rea  and volume as well as 
the p re s su re  difference (17) therein,  and then, r e fe r r ing  everything to the mass of a single droplet or bubble, 
obtain the corresponding functions 

s. = s - -  3vOa,/OT , (18) 
R 

( f , = f +  3~,(r, = g - - v  p~ , (19) 
R R 
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3 (% --  TOo./OT) ) u. = u  + 3v(~.--T0,~./c)T) = Ts + g - -  v p~-- (20) 
R R ' 

h , = h - - v  (p, (1-- exp Y) - -  ( 4 •  

= T s - } - g - - v  (p~(1 --exp Y) (4-4- 1) a,--3TOa,/OTR "~ ) . (21) 

g , = g - - v ( p , ( i - - e x p Y )  ( 4 + 1 ) % )  (22) 
\ R ' 

in which the upper sign (+) r e fe r s  to a droplet ,  and the lower sign (--) to a bubble, while the sign of the expo- 
nential is determined as in Eqs, (15) and (16). 

Having found the enthalpy, we can determine the latent heat with allowance for sur face  tension.  

In the conventional latent-heat expression 

r = h"--  h' 

the effects of sur face  tension and capil lary excess p r e s s u r e  a re  d is regarded .  Taking those effects into 
account, we need to examine two cases ,  depending on the nature of the two-phase  sys t em.  

If droplets d i sperse  with a uniform tempera tu re  and s ize  distr ibution in a vapor a tmosphere ,  then the 
latent heat per unit mass of liquid phase can be written 

r ;  = h " -  h i . 

If a liquid volume eontains bubbles with a uniform tempera tu re  and s ize  distribution, then the latent heat 
per unit mass  of vapor phase is given by 

r'; = h ;  - -  h'.  

On the basis of the foregoing relat ions two kinds of capil lary latent heat can be described by the expres-  
s ion 

r . = r _ + v  ( p~ (1--  exp Y) - -  (4___1) %--R 3TO(:r./OT ) , (23) 

(+) re fer  to droplets in a vapor a tmosphere ,  and the lower signs (--) to bubbles in a in which the upper signs 
liquid volume. 

It is seen that these two kinds of capi l lary latent heat differ from the usual form and obey the double in- 
equality 

r ,  < r  < r ' ,  

under the condition that the t empera tu re  and radii  of the d i spe r se -phase  part icles a re  identical. This m e a n s  
that,  contrasted with the usual latent heat, evaporation of the liquid requires  less energy if droplets a re  
formed and, on the other hand, more  energy is re leased in condensation of the vapor phase if it consists  of 
bubbles. 

The foregoing considerations suggest  apt definitions for the differentials of the thermodynamic functions 
for d i sperse  par t ic les .  

Thus.  the differentials of the principal  thermodynamic  variables (1)-(3) a re  specified in the form 

dU, = dF, + d (TS,). 

dH, = dU. -t- d (p,V). 

dG, = dF. + d (p,V). 
whereupon the Gibbs -- Duhem relat ion 

S,dT - -  Vdp, + Mdg, = 0 

can be used to define the differentials of the potential functions as 

dF, = - -  p,dV - -  S,dT -}- g,dM. dU, = TdS. - -  p,dV @ g,dM. 

(24) 

(25), (26) 
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dH, = TdS, + Vdp, + g, dM, dG,= V d p , - - S ,  dT + g, dM, (27).(28) 

and for  the speci f ic  va lues ,  when the Gibbs - - D u h e m  re la t ion  has the f o r m  

s, dT- -vdp ,  + rig, = 0, (29) 

Che di f ferent ia ls  of the potential  functions per  unit mass  of the d i s p e r s e  phase  can be descr ibed  by the r e l a -  
t ions 

dr, = - - p , d v - -  s, dT, du, =- Tds, - -p ,dv,  (30), (31) 

dh, = Tds, - -  vdp,, dg, = vdp, - -  s,dT. (32), (33) 

T h e s e  equations a r e  s een  to d i f fer  f r o m  the i r  conventional counte rpar t s  only insofar  as they contain s . ,  
d s . ,  p , ,  and d p ,  r a t h e r  than s ,  ds ,  p, and dp. The  entropy s .  and p r e s s u r e  p ,  for  the d i s p e r s e  s t a te  have 
a l r eady  been found, so  the i r  d i f ferent ia ls  a r e  read i ly  de te rmined .  Different ia t ing express ions  (16) and (18) 
with r e s p e c t  to T and the radius  B, we obtain 

Os, ds 3v ( Oa, d In v 0~% 
aT -- dT R ~, c?T d-~-- + -~Z-]  ' 

as, 3v (1 0% ) 
OR = R  R - "  OT OTOR ' 

,d ) Op, = (  aps m OY 14-1 Oa, 
o r  k a T  ' expY+---=-----R " ~'OT (36) 

Op, OY . a._~_,. 
= Ps - -  e x p Y +  (1 =h 1) 

OR OR OR R 

(34) 

(35) 

(37) 

The double s ign convention is as explained above.  

For  the given conditions the entropy di f ferent ia l  is defined as 

d s * = d s - -  3v a~,aT_ dln ~R T' O~-a*OT ~- dT+ OTOR02a* dR'),, 

whereas  the p r e s s u r e  d i f ferent ia l  in d i s p e r s e  par t ic les  can be defined in the fo rm 

(38) 

dp, = (dp, + pflY) exp Y + (1 __% 1) d a_~. , 
R 

which may be r ega rded  as an analog of the Clausius - - C l a p e y r o n  equations 

S" - -  S~ dps -~ - -  clT 
0 "  - -  V ~ 

(39) 

for  the d i s p e r s e  s ta te ,  because  the p r e s s u r e  p does not depend on the t e m p e r a t u r e  alone.  

Once the d i f ferent ia ls  have been defined, we can define the po ly t ropy  exponent n ,  for  the d i s p e r s e  s ta te .  

The  i sen t ropy  exponent ac tua l ly  denotes the ra t io  of the i sobar ic  to the i soehor ie  specif ic  heat,  but these  
~wo types  of spec i f ic  heat r e p r e s e n t  the ra t ios  of the enthalpy and in ternal  energy to the t e m p e r a t u r e .  Thus,  
in the sa tu ra t ion  s ta te ,  for  which the the rmodynamic  functions a r e  functions of one var iab le ,  the total  d i f fe ren-  
t ia ls  can be used in the express ion  

cp dh/dT dh 
• . . . . .  . ( 4 0 )  

c v du/dT du 

The var ia t ion  of the radi i  of drople ts  and bubbles is always re la ted  to the entropy var ia t ion ,  which is nei ther  
an i sent ropic  riot a polytropic  p r o c e s s .  The express ion  (40) for the i soentropy exponent enables us to define 
a c h a r a c t e r i s t i c  analog of the polyt ropy exponent fo r  rea l  p r o c e s s e s .  F r o m  E qs. (31), (32), and (40) we obtain 

dh, Tds. -4- vdp. 
n. -- (41) 

du, Tds. - -  p.dv 

Since the analog of the polytrolSy exponent is valid for  d i spe r se  s ta tes ,  it may  be de te rmined  with the 
help of (16), (38), and (39). 
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It should be recal led that the substitution dS ,  = 0 yields the analog of the isentropy exponent 

vdp. 
• , ( 4 2 )  

p,dv 

which has already been mentioned in the l i terature  on two-phase sys tems [10]. 

In the case of a polydisperse sys tem,  where the t empera tu re  and s ize  distribution in the d isperse  phase 
is not uniform, averaging is necessa ry .  Two averaging techniques a re  used, depending on the nature of the 
distr ibutions.  The distr ibution functions can be either d i sc re te  or continuous. 

To general ize  and abbreviate the subsequent calculations we introduce the notation 

z. = s.; f.; u,; h.; g.; r. (43) 

as general ized symbols for Eqs.  (18)-{23). 

Given the condition that the d i sperse  phase consists of d i sc re te  groups,  in each of which the individual 
spher ica l  part icles have t empera tu re  T and radius r ,  and the mass M denotes the total mass of the groups,  
the formula for averaging per unit mass of the d i sperse  phase is 

- -  h ] z, = , (44) XX 
k i 

where one of the variabies of Eq. (43) is inserted in place of z , .  

For  the case in which the d i sperse  phase contains spher ica i  part icles with a continuous t empera tu re  and 
s ize  distribution, analogously, the formula 

z, (r, a) MaTan 
(45) 5, 

gives the averages  of the indicated functions per unit mass of the d i sperse  phase. 

So far we have discussed the thermodynamic  functions and cer tain other relations for the d isperse  phase 
in one-component sys tems  i r respec t ive  of their  aggregate  s tate .  Below we indicate the differences that can 
be established between one- and two-component  sys tems with respec t  to the d isperse  phase.  

It is well known that the behavior of the interphase boundary layer is determined by sur face  tension, 
which depends significantly on the chemical  composit ion and tempera tu re  of the liquid phase, to a lesser  
degree  on the par t ic le  s ize  (apart f rom extremely  smal l  s izes) ,  arid almost  not at all on the chemical  com-  
position of the contiguous uncondensed phase . .  

Thq foregoing considerations imply that sur face  tension must be included in all equations for the medium 
• re fe r  to the contiguous vapor or gas,  regard less  of which liquid is in the d isperse  state.  

This means that the equations derived for the d i sperse  phase in one-component sys tems a re  also valid 
in general  for sys tems of two or more  components,  but the following must be borne in mind concerning their  
form.  

Given the assumption of equilibrium, phases having different chemical  compositions interpenetrate,  so 
that the liquid phase becomes a solution and the vapor phase a mixture of vapors .  Therefore ,  in determining 
the sur face  tension it is essential  to consider  both the solubility of the uncondensed component inthe surround-  
ing liquid as well as evaporation of the liquid. 

In the nonequilibrium case,  where the dimensions of the droplets or bubbles vary ,  the dec reas ing-mass  
phase does not undergo variations in chemical  composition, whereas the concentrat ion of the other phase varies  
continuously, although this t ransi t ion can be limited by the physical  and chemical  propert ies  of the components.  

Consequently, the equations derived for the d i sperse  phase in one-component sys tems are  also valid for 
two-phase  sys tems in the same  form,  subject to the condition that physical variables depending on the sur face  
tension a re  defined with sufficient accuracy ,  as discussed above. 

In the case of multieomponent sy s t ems ,  i . e . ,  when the d i sperse  phase consists of droplets or bubbles of 
d i ss imi la r  chemical  composition, the equations derived for one-component sys tems  a re  valid only for the in- 
dividual components of the d i sperse  phase.  
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Under these  conditions we use  the symbols  z(. 1), z(. D, and z(. 1) in Eqs.  (43)-(45), the s u p e r s c r i p t  (i) de -  

noting that  the given va r i ab le  r e f e r s  to the i - th  component ,  and we denote the mass  of the i - th  component  by 
Mi. In this case  the weighted ave rages  of the above-ment ioned  var iab les  per  unit m a s s  of the d i s p e r s e  phase  
can be defined as  z'2M, 

z~ ) - -  ~ (46) 

i 

for particles having discrete temperature and size distributions, or as 

for  continuous d is t r ibut ions .  

~(,~) ~ (47) 

i 

We complement  the foregoing d i scuss ion  with an analys is  of a spec ia l  case  of theore t i ca l  and p rac t i ca l  
s igni f icance .  

The  p r e s s u r e  in a vapor  bubble n e c e s s a r i l y  exceeds the p r e s s u r e  of the surrounding liquid. It is a l so  
known that  the  Clausius -- Clapeyron  equation r e l a t e s  the p r e s s u r e  d i f ference  to the t e m p e r a t u r e  d i f ference  
[17, 18], so  that  Eqs .  (13)-(16) do not de sc r ibe  t h e r m a l  equi l ibr ium between vapor  bubbles and the surrounding 
liquid. 

Exper imen ta l  s tudies  indicate that  as bubbles grow evapora t ion  takes  place  at the bubble boundary,  the 
t e m p e r a t u r e  and p r e s s u r e  in the bubble in te r io r  dec reas ing .  The  t e m p e r a t u r e  inside the bubble d e c r e a s e s  
due to evapora t ion  at  the vapor  -- liquid in te r face  with growth of the bubble [19]. 

These  exper imenta l  r e su l t s  can be cha rac t e r i zed  by the re la t ion  

sgn dT = sgn dp'. (48) 

or equivalently,  in accordance  with the Clausius - -  Clapeyron equation, in the f o r m  

sgn dp, = - -  sgn dR, (49) 

or even in the a l t e rna t ive  f o r m  

sgn dp. = sgn d (Ap). (50) 

In the nonequi l ibr ium s ta te  the bubble boundary always moves rad ia l ly  due to the t e m p e r a t u r e  d i f fe rence  
between phases  118, 20]. 

When bubbles implode,  the t e m p e r a t u r e  d i f ference  produces  a heat sink accompanied  by a reduct ion in 
s i ze .  As a r e su l t  of condensat ion at the phase  in te r face ,  not only does not bubble radius  diminish,  but the 
p r e s s u r e  d i f ference  between phases  and the bubble p r e s s u r e  i nc rea se  accord ing  to Eqs.  (48)-(50), whereas  the 
wall  t e m p e r a t u r e  and s u r f ace  tens ion r e m a i n  vir tual ly  unchanged [18]. 

The  i nc r ea se  in t e m p e r a t u r e  elicits  a s t ronge r  heat sink, and the s i ze  reduct ion p romotes  an i nc rea se  
in the  t e m p e r a t u r e  d i f ference ,  causing the heat sink to be m o r e  ac t ive ,  so  that ,  con t r a ry  to al l  expectat ions,  
the t e m p e r a t u r e  var ia t ion  does not produce rapid t e m p e r a t u r e  equalizat ion between phases  [21]. 

It must  be rea l i zed ,  however ,  that  the reduct ion in bubble s i ze  does not n e c e s s a r i l y  have a monotonic 
behavior ,  r a t h e r  it can exhibit a f luctuation c h a r a c t e r  [22, 23]. The  poss ib le  s ize  fluctuations can be r ega rded  
as a secondary  p roces s  supe r imposed  on the p r i m a r y  effect induced by the t e m p e r a t u r e  d i f fe rence .  Despi te  
this va r ia t ion  of s ize ,  both the t e m p e r a t u r e  and p r e s s u r e  in the bubbles a r e  always higher than in the liquid 
phase .  Consequently,  the t e m p e r a t u r e  d i f fe rence  between phases  is p r e s e r v e d  and gives r i s e  to a gradual  
reduct ion in s i z e .  

It  follows f rom the foregoing considera t ions  that  the implosion of bubbles is a posi t ive feedback p r o c e s s .  
On the other hand, this effect can be r ega rded  as a r ea l i za t ion  of the reac t ion  pr inciple  for  the spec ia l  case  of 
rad ia l ly  moving e lements  of a s u r f ace  with diminishing m a s s .  Here  work  is done in compres s ion ,  accompanied 
by heat r e l e a s e .  It is Iogical to inquire,  t he r e fo re ,  how much the bubble t e m p e r a t u r e  can i n c r e a s e .  Inasmuch 
as this quest ion cannot be answered  p rec i se ly ,  we have no a l te rna t ive  but to a s s u m e  that the t e m p e r a t u r e  in- 
c r e a s e s  until it is rm longer subjected to the influence of the p r i m a r y  cause  of the p r o c e s s .  
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In the given situation, that cause is the growing t empera tu re  difference,  for which the p re s su re  dif fer-  
ence and the p res su re  itself inc rease .  This means that a vapor bubble would cease  to exist if the surface  
tension were to dec rease  with increas ing bubble t empera tu re  [21]o Inasmuch as the wall t empera tu re  and 
sur face  tension s ca rce ly  decrease  at all [18], the increasing p res su re  and t empera tu re  of the vapor bubble 
exceed the usual cr i t ica l  values.  Under the conditions that we have stated above it would be more  co r r ec t  to 
r e f e r  to this effect as a modification of the cr i t ical  s tate,  as is inferred f rom the fact that the saturat ion 
state also depends on the par t ic le  s ize .  

The latter hypothesis is in fact confirmed by the fundamental results  of cavitation studies.  It has been 
found that cavitation is induced pr imar i ly  by repeated s h o r t - t e r m  high p ressures  and tempera tures  a c c o m -  
panying the implosion of bubbles [24]. The high t empera tu re  of a bubble in the final s tate  is postulated on the 
basis of the fact that at cavitation-induced erosion pits a change in color of a metal  sur face  can be observed.  
The surface  erosion and color change cannot be attributed solely to chemical  dissociat ion of the liquid [24]. 

In looking for the causes of cavitation erosion we re fe r  to the capi l lary excess p r e s su re  described by 
expression (11). 

We re i te ra te  in this connection that the wall t empera tu re  and surface  tension remain  pract ical ly  un- 
changed [18], so that the variat ions in sur face  tension must be identified with s ize  variat ion.  

Opinions differ with regard  to this problem. Using a quasi thermodynamic approach,  Tolman [9] p re -  
dicts a reduction in sur face  tension for smal l  bubble s izes ,  and this resul t  is cor robora ted  by the s ta t is t ical  
t rea tment  of Kirkwood and Buff [25]. On the other hand, Martynov [26] assumes  that the sur face  tension must 
increase  with the curvature .  

A direct  experimental  method has not been devised to date for confirmation of these theoret ical  resul ts ,  
but insight into the problem is afforded by a hypothesis of Thomson and Thomson [12]. The latter assume that 
the curve of the sur face  tension ~ .  as a function of the radius R passes through a minimum. Accordingly,  
the above-indicated cases and part ial  theore t ica l  resul ts  appear to complement one another.  

We therefore  a r r ive  at the conclusion that in the initial period of bubble implosion the s ize  variat ion 
exerts a s t ronger  influence than surface  tension on the capi l lary excess p ressure ,  i~ e., the numerator  in ex- 
press ion  (11) decreases  more  slowly than the denominator .  In the later period of bubble implosion the surface  
tension (above the minimum) increases  inversely as the s ize ,  whereupon the capil lary excess p r e s su re  in- 
c reases  so rapidly as to produce extremely high values of the  final p re s su re  and tempera tu re  in the bubbles. 
This inference is completely consistent with the well-known experimental  resul ts  that if the final p ressu re  in 
bubble implosion is very  high, it can be severa l  orders  of magnitude (10 2 to  10 3 ) grea te r  than the normal  c r i t -  
ical  p r e s su re .  This order  of magnitude of the final p re s su re  can occur only in the event of an ultimately rapid 
and sizable increase  in the sur face  tension in t ransi t ion to very  smal l  bubble s izes .  

Under the given c i rcumstances  t empera tu re  equalization of the phases takes place in such a way that a 
bubble of smal l  res idual  mass  existing in the al tered cr i t ical  s tate  is determined by the final radii ,  expands 
instantaneously,  thereby generating a s t rong shock wave, and then mixes with the liquid phase.  It can be ob- 
served that sur face  effects take on special  importance when a bubble is close to complete implosion [18], i . e . ,  
when its radius is less than a few microns~ 

It is important to mention, finally, that the usual two-dimensional  thermodynamic  diagrams (pressure 
versus  t empera tu re ,  p r e s su re  versus  specific volume, t empera tu re  versus  specific entropy, specific enthalpy 
versus  specific entropy, etc.) a re  valid only for the liquid and vapor volumes.  Diagrams represent ing drop-  
lets and bubbles have been investigated in three-d imens ional  space and can be derived f rom the two-dimen-  
sional diagrams by adding a third coordinate 1/R to them.  In such coordinate sys tems the original d iagrams 
become the initial planes, in which 1/R = 0, and so remain  valid for the volume phases;  in other words,  s u r -  
face t e rms  re fe r r ing  to d i sperse  part icles  of finite radius vanish in the modified equations. 

Although the t ransla t ional  motion effects ignored here  a re  of considerable importance,  they do not al ter  
the nature of the investigated p rocesses ,  but the i r  t ime dependence does of course  change accordingly.  

N O T A T I O N  

A, a rea  of phase interface;  Cp, i sobar ic  specific heat; Cv, i sochor ic  specific heat; F, f ree  energy;  f, 
specific f ree  energy; G, f ree  enthalpy; g, specific f ree  enthalpy; H, enthalpy; h, specific enthalpy; M, mass ;  
n, polytropy exponent; p, p re s su re ;  Ap, p r e s s u r e  difference;  Ps, sa turat ion p ressure ;  R, radius of d i sperse  
par t ic les ;  r ,  latent heat of vaporization; S, entropy; s,  specific entropy; T, absolute t empera ture ;  U, 
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internal energy; u, specific internal energy; V, volume; v, specific volume; y ,  exponent of deviation from 
saturation state; z, arbi trary function; 5, quantity characterizing intermoleeular forces; u ,  isentropy ex- 
ponent; q, surface tension; prime refers to the liquid phase of a vapor; double prime refers to the vapor 
phase; asterisk refers  to the disperse state.  
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